DNA vaccination against autoimmune disease
نویسندگان
چکیده
منابع مشابه
Impaired Autoimmune T Helper 17 Cell Responses Following DNA Vaccination against Rat Experimental Autoimmune Encephalomyelitis
BACKGROUND We have previously shown that vaccination with DNA encoding the encephalitogenic peptide myelin oligodendrocyte glycoprotein (MOG)(91-108) (pMOG) suppresses MOG(91-108)-induced rat Experimental Autoimmune Encephalomyelitis (EAE), a model for human Multiple Sclerosis (MS). The suppressive effect of pMOG is dependent on inclusion of CpG DNA in the plasmid backbone and is associated wit...
متن کاملCEA Plasmid as Therapeutic DNA Vaccination against Colorectal Cancer
Background: Human colorectal cancer cells overexpress carcinoembryonic antigen (CEA). CEA is a glycoprotein which has shown to be a promising vaccine target for immunotherapy against colorectal cancer. Objective: To design a DNA vaccine harboring CEA antigen and evaluate its effect on inducing immunity against colorectal cancer cells in tumor bearing mice. <str...
متن کاملDNA vaccination against oncoantigens
The emerging evidence that DNA vaccines elicit a protective immune response in rodents, dogs and cancer patients, coupled with the US Food and Drug Administration (FDA) approval of an initial DNA vaccine to treat canine tumors is beginning to close the gap between the optimistic experimental data and their difficult application in a clinical setting. Here we review a series of conceptual and bi...
متن کاملSpecific antigen vaccination to treat autoimmune disease.
Specific antigen vaccination by administration of the target antigen in aqueous solution has resulted in significant decreases of disease severity in animal models of experimental allergic encephalomyelitis, type I diabetes, and several forms of antigen-induced arthritis, even if administered after the initiation of symptoms. However, in experimental autoimmune encephalomyelitis (EAE) and type ...
متن کاملDirected vaccination against pneumococcal disease.
Immunization strategies against commensal bacterial pathogens have long focused on eradicating asymptomatic carriage as well as disease, resulting in changes in the colonizing microflora with unknown future consequences. Additionally, current vaccines are not easily adaptable to sequence diversity and immune evasion. Here, we present a "smart" vaccine that leverages our current understanding of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genome Biology
سال: 2000
ISSN: 1465-6906
DOI: 10.1186/gb-spotlight-20000922-01